T.P.C. REVIEW MENU: Degree and Radian Measurements

Assumption: Everyone learns differently so students should not always have to work on the same material at the same time.

Complete: All Entrée Items, 3 Appetizers OR desserts

COMPILE IN ORDER OF LEARNING GOALS. STAPLE AND PUT INTO PORTFOLIO.

Learning Goal	Appetizer (Practice)	Entrée (Required)	Dessert (Above & Beyond)
Identify angle measurements in degrees (positive and negative)	☐ A1. Practice with Negative Angles	☐ E1. Identify Angles in Degrees	
2. Identify angle measurements in radians (positive and negative)		☐ E2. Identify Angles in Radian	DX Exercise 71-78 (p.369)
3. Calculate co-terminal angles in radian and degrees	☐ A3. Exercise 33-34 (p.368)	☐ E3. Co-terminal Angles	☐ D3. Rotations ☐ D3.1 Teach a peer(signature)
4. Calculate supplementary and complementary angles in radian and degrees	☐ A4.1 Adding Fractions Practice ☐ A4.2 Fractions Workshop with Ms. Song (initials)	☐ E4. Complementary and Supplementary Angles	□ D4. Essay Question: Explain why $\frac{5\pi}{4}$ radian has neither complement or supplement. USE calculations! □ D4.1 Teach a peer(signature)
5. Convert between radian and degrees.	☐ AX. Read Conversions between Degrees (p.364) + Exercise #47-50, 55-57	☐ E5. Converting Radians and Degrees	☐ D5. Essay Question: What is larger: one degree or one radian? Justify your answer using MULTIPLE explanations.

Find the measure of each angle.

1)

2)

3)

P1. Practice with Negative Angles

Date Period_

Find the measure of each angle.

1)

2)

4)

1) -210°

2) -120°

3) -285°

4) -50°

Answers to P1. Practice with Negative Angles (ID: 1)

1) -210°

2) -120°

3) -285°

4) -50°

E1 Identify angles in degrees

Find the measure of each angle.

1)

2)

3)

4)

Draw an angle with the given measure in standard position.

5) 100°

6) 675°

7) -10°

8) -690°

Answers to E1 Identify angles in degrees (ID: 1)

- 1) -215° 5)

- 2) -110° 6)

- 3) -40° 7)
- 4) 200°
- 8)

E2. Identify Angles in Radian

Date_____Period

Draw an angle with the given measure in standard position.

1)
$$\frac{\pi}{3}$$

2)
$$-\frac{3\pi}{4}$$

3)
$$\frac{5\pi}{4}$$

4)
$$\frac{11\pi}{6}$$

5)
$$-\frac{11\pi}{3}$$

6)
$$-\frac{5\pi}{9}$$

Answers to E2. Identify Angles in Radian (ID: 1)

1)

5)

2)

3)

In Exercises 47–54, convert the measure from degrees to radians. Round to three decimal places.

47. 115°

48. 87.4°

49. -216.35°

50. −48.27°

51. 532°

52. 0.54°

53. -0.83°

54. 345°

In Exercises 55-62, convert the measure from radians to degrees. Round to three decimal places.

55. $\pi/7$

56. $5\pi/11$

57. $15\pi/8$

58. 6.5π

59. -4.2π

60. 4.8

61. -2

62. -0.57

In Exercises 63-66, convert to decimal degree form.

63. (a) 54° 45′

(b) $-128^{\circ} 30'$

64. (a) 245° 10′

(b) 2° 12′

65. (a) 85° 18′ 30″

(b) 330° 25"

66. (a) -135° 36″

(b) -408° 16′20″

In Exercises 67-70, convert to D° M' S" form.

67. (a) 240.6°

(b) -145.8°

68. (a) -345.12°

(b) 0.45

69. (a) 2.5

(b) -3.58

70. (a) -0.355

(b) 0.7865

In Exercises 71-74, find the angle in radians.

In Exercises 75–78, find the radian measure of the central angle of a circle of the given radius that intercepts an arc of the given length.

Radius Arc Length

75. 15 inches 4 inches

76. 16 feet 10 feet

77. 14.5 centimeters 25 centimeters

78. 80 kilometers 160 kilometers

In Exercises 79–82, find the length of the arc on a circle of the given radius intercepted by the given central angle.

Radius	Central Angle
79. 15 inches	180°
80. 9 feet	60°
81. 6 meters	2 radians
82. 40 centimeters	$3\pi/4$ radians

Distance Between Cities In Exercises 83-86, find the distance between the cities. Assume that earth is a sphere of radius 4000 miles and the cities are on the same meridian (one city is due north of the other).

	Citý	Latitude
83	Dallas, Texas	32° 47′ 9″ N
	Omaha, Nebraska	41° 15′ 42″ N
84	. San Francisco, California	37° 46′ 39″ N
	Seattle, Washington	47° 36′ 32″ N
85	. Miami, Florida	25° 46′ 37″ N
	Erie, Pennsylvania	42° 7′ 15″ N
86	. Johannesburg, South Africa	26° 10′ S
	Jerusalem, Israel	31° 47′ N

- 87. Difference in Latitudes Assuming that earth is a sphere of radius 6378 kilometers, what is the difference in latitude of two cities, one of which is 600 kilometers due north of the other?
- **88.** *Difference in Latitudes* Assuming that earth is a sphere of radius 6378 kilometers, what is the difference in latitude of two cities, one of which is 800 kilometers due north of the other?

A.3 #33-34

368

CHAPTER 4 | Trigonometry

(b)

17. (a)
$$-9\pi/4$$

(b)
$$-2\pi/15$$

18. (a)
$$8\pi/9$$

(b)
$$8\pi/45$$

In Exercises 19–20, find (if possible) the complement' and supplement of the angle.

19. (a)
$$\pi/3$$

(b)
$$3\pi/4$$

In Exercises 21–24, estimate the angle in degrees.

21.

22.

23

24.

In Exercises 25–28, determine the quadrant in which the angle lies.

27. (a)
$$-132^{\circ} 50'$$

(b)
$$-336^{\circ}$$

28. (a)
$$-260^{\circ}$$

(b)
$$-3.4^{\circ}$$

In Exercises 29-32, sketch the angle in standard position.

30. (a)
$$-270^{\circ}$$

(b)
$$-120^{\circ}$$

(b)
$$-480^{\circ}$$

(b)
$$-600^{\circ}$$

In Exercises 33–36, determine two coterminal angles (one positive and one negative) for the given angle. Give your answers in degrees.

36. (a)
$$-420^{\circ}$$

In Exercises 37 and 38, find (if possible) the complement and supplement of the angle.

In Exercises 39–42, express the angle in radian measure as a multiple of π . (Do not use a calculator.)

39. (a)
$$30^{\circ}$$

41. (a)
$$-20^{\circ}$$

(b)
$$-240^{\circ}$$

42. (a)
$$-270^{\circ}$$

In Exercises 43–46, express the angle in degree measure. (Do not use a calculator.)

• 43. (a)
$$3\pi/2$$

(b)
$$7\pi/6$$

44. (a)
$$-7\pi/12$$

(b)
$$\pi/9$$

45. (a)
$$7\pi/3$$

(b)
$$-11\pi/30$$

46. (a)
$$11\pi/6$$

(b)
$$34\pi/15$$

E3 Co-Terminal Angles

Find a positive and a negative coterminal angle for each given angle.

4)
$$\frac{41\pi}{12}$$

$$5) \frac{5\pi}{12}$$

6)
$$\frac{13\pi}{12}$$

E3 Co-Terminal Angles

Find a positive and a negative coterminal angle for each given angle.

$$2) -180^{\circ}$$

4)
$$\frac{41\pi}{12}$$

5)
$$\frac{5\pi}{12}$$

6)
$$\frac{13\pi}{12}$$

E3 Co-Terminal Angles

Find a positive and a negative coterminal angle for each given angle.

4)
$$\frac{41\pi}{12}$$

5)
$$\frac{5\pi}{12}$$

6)
$$\frac{13\pi}{12}$$

Answers to E3 Co-Terminal Angles (ID: 1)

4)
$$\frac{17\pi}{12}$$
 and $-\frac{7\pi}{12}$

5)
$$\frac{29\pi}{12}$$
 and $-\frac{19\pi}{12}$ 6) $\frac{37\pi}{12}$ and $-\frac{11\pi}{12}$

6)
$$\frac{37\pi}{12}$$
 and $-\frac{11\pi}{12}$

Answers to E3 Co-Terminal Angles (ID: 1)

2)
$$180^{\circ}$$
 and -540° 3) 525° and -195°

4)
$$\frac{17\pi}{12}$$
 and $-\frac{7\pi}{12}$

5)
$$\frac{29\pi}{12}$$
 and $-\frac{19\pi}{12}$ 6) $\frac{37\pi}{12}$ and $-\frac{11\pi}{12}$

6)
$$\frac{37\pi}{12}$$
 and $-\frac{11\pi}{12}$

Answers to E3 Co-Terminal Angles (ID: 1)

1)
$$15^{\circ}$$
 and -705°

1)
$$15^{\circ}$$
 and -705° 2) 180° and -540° 3) 525° and -195°

4)
$$\frac{17\pi}{12}$$
 and $-\frac{7\pi}{12}$

5)
$$\frac{29\pi}{12}$$
 and $-\frac{19\pi}{12}$ 6) $\frac{37\pi}{12}$ and $-\frac{11\pi}{12}$

6)
$$\frac{37\pi}{12}$$
 and $-\frac{11\pi}{12}$

D3. Rotations and Co-terminal Angles

Match the radian measure with the corresponding verbal translation

1. $\frac{7\pi}{3}$

 $\frac{8\pi}{3}$

 $\frac{7\pi}{6}$

 $\frac{9\pi}{4}$

 $\frac{2\pi}{3}$

 $\frac{10\pi}{3}$

A. 1 copy more than 3 rotations

B. 1 copy less than 3 rotations

C. 1 copy more than 2 rotations

D. 1 copy less than 2 rotations

E. 1 copy more than ½ of a rotation

F. 1 copy less than ½ of a rotation

D3. Rotations and Co-terminal Angles

Match the radian measure with the corresponding verbal translation

 $\frac{7\pi}{3}$

 $\frac{8\pi}{3}$

 $\frac{7\pi}{6}$

 $\frac{9\pi}{4}$

 $\frac{2\pi}{2}$

10π

A. 1 copy more than 3 rotations

B. 1 copy less than 3 rotations

C. 1 copy more than 2 rotations

D. 1 copy less than 2 rotations

E. 1 copy more than ½ of a rotation

F. 1 copy less than ½ of a rotation

Name:

Adding Fractions

with the Unlike Denominator, Requires Simplifying

$$\frac{1}{3} \qquad \frac{1}{3} = \frac{2}{6} \qquad \frac{1}{3} = \frac{2}{6} \qquad \frac{1}{3} = \frac{2}{6} \qquad \frac{1}{3} = \frac{2}{6} \qquad \frac{1}{3} = \frac{1}{6} = \frac{1}{6} \qquad \frac{1}{6} = \frac{1}{6} \qquad \frac{1}{6} = \frac{1}{2}$$

Add the fractions and simplify the answers.

a.
$$\frac{2}{12} + \frac{4}{6}$$

b.
$$\frac{4}{8} + \frac{1}{4}$$

d.
$$\frac{1}{3}$$
 $\frac{3}{9}$

$$\frac{3}{6}$$
 $\frac{2}{12}$

$$9 \frac{1}{2} + \frac{1}{10}$$

h.
$$\frac{1}{6} + \frac{1}{3}$$

$$\frac{1}{6}$$
 $+\frac{4}{12}$

$$\frac{1}{4}$$
 $\frac{2}{8}$

$$\frac{1}{5}$$

 $\frac{2}{10}$

$$\frac{4}{14} + \frac{1}{7}$$

m.
$$\frac{1}{4}$$
 $\frac{1}{3}$
 $\frac{3}{12}$

n.
$$\frac{1}{2}$$

$$\frac{1}{10}$$

$$\frac{1}{5}$$

$$\begin{array}{ccc}
0 & \frac{1}{14} \\
 & \frac{2}{7} \\
 & + \frac{1}{7}
\end{array}$$

$$\frac{1}{8}$$
 $\frac{1}{2}$
 $+\frac{1}{8}$

E4. Calculate Supplementary and Complementary Angles

Find the supplement of each angle

1) 50 degrees 2)
$$\frac{5\pi}{7}$$
 rad 3) 18 degrees 4) 91 degrees 5) $\frac{\pi}{6}$ rad

$$2)\frac{5\pi}{7} rad$$

$$5)\frac{\pi}{6}$$
 rad

Find the complement of each angle

1) 12 degrees 2)
$$\frac{2\pi}{7}$$
 rad 3) $\frac{\pi}{3}$ rad

$$2)\frac{2\pi}{7} rad$$

$$3)\frac{\pi}{3}$$
 rad

4)
$$\frac{\pi}{6}$$
 rad

E4. Calculate Supplementary and Complementary Angles

Find the supplement of each angle

2) 50 degrees 2)
$$\frac{5\pi}{7}$$
 rad 3) 18 degrees 4) 91 degrees 5) $\frac{\pi}{6}$ rad

$$2)\frac{5\pi}{7} rad$$

5)
$$\frac{\pi}{6}$$
 rad

Find the complement of each angle

2) 12 degrees 2)
$$\frac{2\pi}{7}$$
 rad 3) $\frac{\pi}{3}$ rad 4) $\frac{\pi}{6}$ rad 5) 89 degrees

2)
$$\frac{2\pi}{7}$$
 rad

$$3)\frac{\pi}{3}$$
 rad

$$4)\frac{\pi}{6}$$
 rad

A. J Conversions

NOTE Note that when no units of angle measure are specified, radian measure is implied. For instance, if you write $\theta = \pi$ or $\theta = 2$, you should mean $\theta = \pi$ radians or $\theta = 2$ radians.

CONVERSIONS BETWEEN DEGREES AND RADIANS

- 1. To convert degrees to radians, multiply degrees by $\frac{\pi \, \text{rad}}{180^{\circ}}$
- 2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \, \mathrm{rad}}$

To apply these two conversion rules, use the relationship π rad = 180°

EXAMPLE 3 Converting from Degrees to Radians

a.
$$135^{\circ} = (135 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}} \right) = \frac{3\pi}{4} \text{ rad}$$
 Multiply by $\pi/180$.

b.
$$540^{\circ} = (540 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}} \right) = 3\pi \text{ rad}$$
 Multiply by $\pi/180$.

c.
$$-270^{\circ} = (-270 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}} \right) = -\frac{3\pi}{2} \text{ rad}$$
 Multiply by $\pi/180$.

NOTE If you have a calculator with a "radian-to-degree" conversion key, try using it to verify the result shown in part (c) of Example 4.

EXAMPLE 4 Converting from Radians to Degrees

a.
$$-\frac{\pi}{2}$$
 rad $= \left(-\frac{\pi}{2}$ rad $\left(\frac{180 \text{ deg}}{\pi \text{ rad}}\right) = -90^{\circ}$ Multiply by $180/\pi$.

b.
$$\frac{9\pi}{2}$$
 rad = $\left(\frac{9\pi}{2}\text{ rad}\right)\left(\frac{180 \text{ deg}}{\pi \text{ rad}}\right) = 810^{\circ}$ Multiply by $180/\pi$.

c. 2 rad =
$$(2 \text{ rad}) \left(\frac{180 \text{ deg}}{\pi \text{ rad}} \right) = \frac{360}{\pi} \approx 114.59^{\circ}$$
 Multiply by $180/\pi$.

TECHNOLOGY

$$1' = 1 \text{ minute } = \frac{1}{60}(1^{\circ})$$

 $1'' = 1 \text{ second } = \frac{1}{3600}(1^{\circ}).$

With calculators it is convenient to use *decimal* degrees to denote fractional parts of degrees. Historically, however, fractional parts of degrees were expressed in *minutes* and *seconds*, using the prime (') and double prime (") notations, respectively. Consequently, an angle of 64 degrees, 32 minutes, and 47 seconds, is represented by $\theta = 64^{\circ}$ 32' 47". Many calculators have special keys for converting an angle in degrees, minutes, and seconds (\mathbb{D}° M'S") into decimal degree form, and vice versa.

In Exercises 47-54, convert the measure from degrees to radians. Round to three decimal places.

- 47. 115° 49. -216.35° 51. 532°
- 48.)87.4° 50. -48.27° 52. 0.54°
- 53. -0.83°
- **54.** 345°

In Exercises 55-62, convert the measure from radians to degrees. Round to three decimal places.

- $55. \pi/7$ $56. 5\pi/11$ $57. 15\pi/8$ $58. 6.5\pi$ 60. 4.8
 - **61.** -2 **62.** -0.57

In Exercises 63-66, convert to decimal degree form.

- **63.** (a) 54° 45′
- (b) $-128^{\circ} 30'$
- **64.** (a) 245° 10′
- (b) 2° 12′
- **65.** (a) 85° 18′ 30″
- (b) 330° 25″
- **66.** (a) -135° 36″
- (b) -408° 16′20″

In Exercises 67-70, convert to D° M' S" form.

- **67.** (a) 240.6°
- (b) -145.8°
- **68.** (a) -345.12°
- (b) 0.45
- **69.** (a) 2.5
- (b) -3.58
- **70.** (a) -0.355
- (b) 0.7865

74.

In Exercises 71–74, find the angle in radians.

71.

In Exercises 75–78, find the radian measure of the central angle of a circle of the given radius that intercepts an arc of the given length.

	Radius	Arc Length
75.	15 inches	4 inches
76.	16 feet	10 feet
77.	14.5 centimeters	25 centimeters
78.	80 kilometers	160 kilometers

In Exercises 79–82, find the length of the arc on a circle of the given radius intercepted by the given central angle.

Radius	Central Angle
79. 15 inches	180°
80. 9 feet	60°
81. 6 meters	2 radians
82. 40 centimeters	$3\pi/4$ radians

Distance Between Cities In Exercises 83-86, find the distance between the cities. Assume that earth is a sphere of radius 4000 miles and the cities are on the same meridian (one city is due north of the other).

City	Latitude
83. Dallas, Texas	32° 47′ 9″ N
Omaha, Nebraska	41° 15′ 42″ N
84. San Francisco, California	37° 46′ 39″ N
Seattle, Washington	47° 36′ 32″ N
85. Miami, Florida	25° 46′ 37″ N
Erie, Pennsylvania	42° 7′ 15″ N
86. Johannesburg, South Africa	26° 10′ S
Jerusalem, Israel	31° 47′ N

- 87. Difference in Latitudes Assuming that earth is a sphere of radius 6378 kilometers, what is the difference in latitude of two cities, one of which is 600 kilometers due north of the other?
- 88. Difference in Latitudes Assuming that earth is a sphere of radius 6378 kilometers, what is the difference in latitude of two cities, one of which is 800 kilometers due north of the other?

E5 Converting Radian & Degrees

Period Date

ID: 1

Convert each radian measure into degrees.

(choose 2)

1) $\frac{5\pi}{6}$

3) $\frac{2\pi}{3}$

4) $\frac{3\pi}{4}$

Convert each degree measure into radians. (choose 2)

5) 240°

7) 300°

8) 330°

Convert each degree measure into radians and each radian measure into degrees. (Choose 3)

9) $-\frac{13\pi}{6}$

10) -525°

11) $\frac{11\pi}{6}$

12) 345°

13) $-\frac{17\pi}{6}$

14) 930°

Answers to E5 Converting Radian & Degrees (ID: 1)

1) 150°

5) $\frac{4\pi}{3}$

9) **-**390°

13) -510°

2) 315°

6) $\frac{\pi}{3}$

 $10) - \frac{35\pi}{12}$

14) $\frac{31\pi}{6}$

3) 120°

7) $\frac{5\pi}{3}$

11) 330°

4) 135°

8) $\frac{11\pi}{6}$

(2) $\frac{23\pi}{12}$