

Energy Problem Set I

Do all work in your journal. Be sure to list givens and unknowns, write a generic and specific energy equation, and solve in the appropriate format.

- 1. A cannon shoots a cannonball of the edge of a cliff that is 26 m high. If the initial speed is 35 m/s how fast is it going just before striking the ground below?
- 2. A roller coaster starts at rest at the top of a hill before rolling down into a valley and back up to the top of a second hill. If the first hill is 54 m high and the second hill is 14 m high, how fast is it going over the second hill?
- 3. A rock is dropped out the window from a height of 24 m. How fast is it going when it is half way down?
- 4. A base ball flies away with a speed of 45 m/s. When it strikes a fan in the bleachers who is sitting 14 m above the batter, how fast is it going?
- 5. A flowerpot is thrown downwards from a 40 m high window with an initial speed of 25 m/s. How fast is it going when it passes another window that is only 12 m off the ground?

email: larrygeni@gmail.com

Helpful Hints

Use *only* when you are stumped. Pay attention to when you need help so you can ask good questions in class when we go over this.

①
$$h'_1 = 26m$$

 $V_1 = 35 \frac{m}{5}$
 $V_4 = 7$

(2)
$$h_{i} = 54m$$

 $v_{i} = 0$
 $h_{f} = 14m$
 $v_{f} = 7$

(3)
$$h_1 = 24m$$

 $V_1 = 0$
 $h_2 = 12m$
 $V_4 = 7$

$$4 h_{1} = 0$$
 $V_{1} = 45 \frac{m}{5}$
 $h_{4} = 14 m$
 $V_{4} = ?$

$$h_{i} = 40m$$

 $V_{i} = 25 \frac{m}{5}$
 $h_{f} = 12 m$
 $V_{f} = ?$

Energy I Answers

$$V_{i} = 30 \text{ M/s}$$

 $V_{f} = 0$
 $V_{f} = 7$

$$KE_{i} = PE_{f}$$

 $\frac{1}{2}MV_{i}^{2} = Mgh_{f}$ so $h_{f} = \frac{V_{i}^{2}}{2g} = \frac{(30s)^{2}}{2(9.8s)^{2}} = 45.9m$

(2) a) h; = 14 m

$$V_1 = 30 \frac{m}{5}$$

 $V_2 = ?$

$$PE_{i} + KE_{i} = KE_{f}$$

$$wgh_{i} + \frac{1}{2}whv_{i}^{2} = \frac{1}{2}whv_{f}^{2}$$

$$V_{f} = \sqrt{2(gh_{i} + \frac{1}{2}v_{i}^{2})} = \sqrt{2(gh_{i} + \frac{1}{2}v_{i}^{2})} = \sqrt{2(gh_{i} + \frac{1}{2}v_{i}^{2})} = \frac{34.3 \frac{m}{5}}{5}$$

- b) Exactly the same as a)
- c) It makes no difference.

(3)
$$m = 11 \text{ kg}$$

 $h_1 = 2.0 \text{ m}$
 $v_1 = 0$
 $h_2 = 0.5 \text{ m}$
 $v_3 = 7$

$$PE_{i} = PE_{f} + KE_{f}$$

 $phgh_{i} = phgh_{f} + \frac{1}{2}phV_{f}^{2} \Rightarrow V_{f} = \sqrt{2(gh_{i} - gh_{f})}$
 $= \sqrt{2(9.8 \frac{m}{5})(2.0m - 0.5m)}$
 $= \frac{5.42 \frac{m}{5}}{}$

4
$$V_{i} = 8\frac{m}{s}$$

 $V_{f} = 0$
 $V_{f} = 7$

$$KE_{i} = PE_{f}$$
 $Mgditt \frac{1}{2}mV_{i}^{2} = yhgh_{f}$
 $h_{f} = \frac{V_{i}^{2}}{2g} = \frac{(8\frac{m}{5})^{2}}{2(9.8\frac{m}{5})^{2}} = \frac{3.27 \text{ m}}{2.98\frac{m}{5}}$